and Blood Pressure in Hypertensive Postmenopausal Women
Arun Maharaj 1, Stephen M Fischer 1, Katherine N Dillon 1, Yejin Kang 1, Mauricio A Martinez 1, Arturo Figueroa 1
Affiliations expand
PMID: 36297080
PMCID: PMC9609406
DOI: 10.3390/nu14204396
Free PMC article
Abstract Aging and menopause are associated with decreased nitric oxide bioavailability due to reduced L-arginine (L-ARG) levels contributing to endothelial dysfunction (ED). ED precedes arterial stiffness and hypertension development, a major risk factor for cardiovascular disease. This study investigated the effects of L-citrulline (L-CIT) on endothelial function, aortic stiffness, and resting brachial and aortic blood pressures (BP) in hypertensive postmenopausal women. Twenty-five postmenopausal women were randomized to 4 weeks of L-CIT (10 g) or placebo (PL). Serum L-ARG, brachial artery flow-mediated dilation (FMD), aortic stiffness (carotid-femoral pulse wave velocity, cfPWV), and resting brachial and aortic BP were assessed at 0 and 4 weeks. L-CIT supplementation increased L-ARG levels (Δ13 ± 2 vs. Δ-2 ± 2 µmol/L, p < 0.01) and FMD (Δ1.4 ± 2.0% vs. Δ-0.5 ± 1.7%, p = 0.03) compared to PL. Resting aortic diastolic BP (Δ-2 ± 4 vs. Δ2 ± 5 mmHg, p = 0.01) and mean arterial pressure (Δ-2 ± 4 vs. Δ2 ± 6 mmHg, p = 0.04) were significantly decreased after 4 weeks of L-CIT compared to PL. Although not statistically significant (p = 0.07), cfPWV decreased after L-CIT supplementation by ~0.66 m/s. These findings suggest that L-CIT supplementation improves endothelial function and aortic BP via increased L-ARG availability. Keywords: aortic blood pressure; arterial stiffness; citrulline; endothelial function; hypertension; postmenopausal women.
Conflict of interest statement The authors declare no conflict of interest with respect to this manuscript.
Figures
Figure 1
Study flow chart.
Figure 2
Individual data and group mean…
Figure 3 Individual data and group mean…
Figure 4
Individual data and group mean…
References
Chomistek A.K., Manson J.E., Stefanick M.L., Lu B., Sands-Lincoln M., Going S.B., Garcia L., Allison M.A., Sims S.T., LaMonte M.J. Relationship of sedentary behavior and physical activity to incident cardiovascular disease: Results from the Women’s Health Initiative. J. Am. Coll. Cardiol. 2013;61:2346–2354. doi: 10.1016/j.jacc.2013.03.031. – DOI – PMC – PubMed
Benjamin E.J., Blaha M.J., Chiuve S.E., Cushman M., Das S.R., Deo R., De Ferranti S.D., Floyd J., Fornage M., Gillespie C., et al. Heart disease and stroke statistics—2017 update: A report from the American Heart Association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485. – DOI – PMC – PubMed
Whelton P.K., Carey R.M., Aronow W.S., Casey D.E., Collins K.J., Dennison Himmelfarb C., DePalma S.M., Gidding S., Jamerson K.A., Jones D.W., et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018;71:e127–e248. – PubMed
Ong K.L., Tso A.W., Lam K.S., Cheung B.M. Gender difference in blood pressure control and cardiovascular risk factors in Americans with diagnosed hypertension. Hypertension. 2008;51:1142–1148. doi: 10.1161/HYPERTENSIONAHA.107.105205. – DOI – PubMed
Coutinho T., Borlaug B.A., Pellikka P.A., Turner S.T., Kullo I.J. Sex differences in arterial stiffness and ventricular-arterial interactions. J. Am. Coll. Cardiol. 2013;61:96–103. doi: 10.1016/j.jacc.2012.08.997. – DOI – PMC – PubMed
Show all 76 references
Comments